An online generalized eigenvalue version of Laplacian Eigenmaps for visual big data

نویسندگان

  • Zeeshan Khawar Malik
  • Amir Hussain
  • Q. M. Jonathan Wu
چکیده

This paper presents a novel online version of laplacian eigenmap termed as generalized incremental laplacian eigenmap (GENILE), one of the most popular manifold-based dimensionality reduction technique performed by solving the generalized eigenvalue problem. We have used swiss roll and s-curve dataset, the most popular datasets used for manifold-based learning techniques, in this paper as artificial datasets. For a real data experiment, we have selected the MNIST digit dataset, the bank-note dataset, and the heart disease dataset for testing and evaluating our novel method and for comparing it with the standard batch isomap method and other manifold-based learning techniques. The experimental results have clearly shown the improvements in terms of classification accuracy by the proposed method in comparison with other techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimension reduction for hyperspectral imaging using laplacian eigenmaps and randomized principal component analysis:Midyear Report

Hyperspectral imaging has attracted researchers’ interests in recent years. Because of its high dimensionality and complexity, the reduction of dimension of hyperspectral data sets has become crucial in processing and categorizing the data. In this project, I will apply two methods of dimension reduction: laplacian eigenmaps and randomized principal component analysis in order to reduce the dim...

متن کامل

On Eccentricity Version of Laplacian Energy of a Graph

The energy of a graph G is equal to the sum of absolute values of the eigenvalues of the adjacency matrix of G, whereas the Laplacian energy of a graph G is equal to the sum of the absolute value of the difference between the eigenvalues of the Laplacian matrix of G and the average degree of the vertices of G. Motivated by the work from Sharafdini an...

متن کامل

Spectral convergence of the connection Laplacian from random samples

Spectral methods that are based on eigenvectors and eigenvalues of discrete graph Laplacians, such as DiffusionMaps and Laplacian Eigenmaps, are often used for manifold learning and nonlinear dimensionality reduction. It was previously shown by Belkin&Niyogi (2007, Convergence of Laplacian eigenmaps, vol. 19. Proceedings of the 2006 Conference on Advances in Neural Information Processing System...

متن کامل

Convergence of Laplacian Eigenmaps

Geometrically based methods for various tasks of data analysis have attracted considerable attention over the last few years. In many of these algorithms, a central role is played by the eigenvectors of the graph Laplacian of a data-derived graph. In this paper, we show that if points are sampled uniformly at random from an unknown submanifold M of RN , then the eigenvectors of a suitably const...

متن کامل

Coloring of DT-MRI Fiber Traces Using Laplacian Eigenmaps

We propose a novel post processing method for visualization of fiber traces from DT-MRI data. Using a recently proposed non-linear dimensionality reduction technique, Laplacian eigenmaps [3], we create a mapping from a set of fiber traces to a low dimensional Euclidean space. Laplacian eigenmaps constructs this mapping so that similar traces are mapped to similar points, given a custom made pai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 173  شماره 

صفحات  -

تاریخ انتشار 2016